Abstract
Due to constantly increasing requirements for more precise and high-resolution instrumentations, microvibration prediction represents an issue of growing importance. Hence the need of reliable analysis tools which can evaluate microvibrations effects efficiently. This paper describes how to tackle the issue of structural uncertainties in microvibration predictions. In particular, uncertainties related to the microvibration sources are analysed as well as those linked to the modelling of the structure. A methodology to define the worst case of vibration produced by on board sources is presented and compared to experimental data. Additionally, an approach to quantify the uncertainties in the Finite Element model is also described.