Abstract
A methodology for detailed differential economic analysis of industrial systems based on an analytical optimization procedure is presented. Existing process integration methodologies for large scale industrial systems (refineries, petrochemicals, chemicals) where a number of processes, streams, and supporting systems are involved, do not provide economic value structure of individual components prior to optimization. Such problems are overcome through an economic analysis of streams and processes in a system. A novel optimization method called analytical optimization for process industries is developed. An overall integration strategy is then developed to capture the impacts of variable operating conditions and complex network connections in the detailed differential economic analysis of systems. The methodology is applied in the design and synthesis of an oil upgrading system. This is an abstract of a paper presented at the 7th World Congress of Chemical Engineering (Glasgow, Scotland 7/10-14/2005).