Abstract
This paper investigates the influence of the interlayer material on the low velocity impact performance of laminated glass. The effect of temperature (50°C, 23°C, 0°C and -30°C) has been explored to observe damage mechanisms and the associated impact resistant properties of the laminated glass. The four interlayer materials investigated were: SGP–Ionoplast as employed in Sentry Glas® Plus, TPU- Thermo-plastic polyurethane, PVB-Polyvinyl butyral and a TPU/SGP/TPU hybrid interlayer. The impact resistance was measured in terms of load peak, absorbed energy, ultimate deformation and crack patterns. The low velocity impact results indicated that both the type of the interlayer materials and testing temperature have great influence on the impact resistant properties of the laminated glass. The laminated glass with SGP interlayer exhibited best impact resistant properties amongst the four structures at room temperature. However, as the temperature was varied, the TPU/SGP/TPU hybrid interlayer performed the best over the entire range of temperatures tested, which can better ensure the safety of the occupants in the vehicle. This is because the elastic and viscous properties of the interlayer materials greatly changes with the temperature caused by the different glass transition temperatures of the interlayer materials.