Abstract
The r-process is supposed to be a primary process which assembles heavy nuclei from a photo-dissociated nucleon gas. Hence, the reaction flow through light elements can be important as a constraint on the conditions for the r-process. We have studied the impact of di-neutron capture and the neutron-capture of light (Z<10) elements on r-process nucleosynthesis in three different environments: neutrino-driven winds in Type II supernovae; the prompt explosion of low mass supernovae; and neutron star mergers. Although the effect of di-neutron capture is not significant for the neutrino-driven wind model or low-mass supernovae, it becomes significant in the neutron-star merger model. The neutron-capture of light elements, which has been studied extensively for neutrino-driven wind models, also impacts the other two models. We show that it may be possible to identify the astrophysical site for the main r-process if the nuclear physics uncertainties in current r-process calculations could be reduced.