Abstract
Non-negative Matrix Factorisation (NMF) is a popular tool in musical signal processing. However, problems using this methodology in the context of Automatic Music Transcription (AMT) have been noted resulting in the proposal of supervised and constrained variants of NMF for this purpose. Group sparsity has previously been seen to be effective for AMT when used with stepwise methods. In this paper group sparsity is introduced to supervised NMF decompositions and a dictionary tuning approach to AMT is proposed based upon group sparse NMF using the β-divergence. Experimental results are given showing improved AMT results over the state-of-the-art NMF-based AMT system.