Abstract
New design approaches will be required to increase the payload to mass fraction for future satellite generations. The multifunctional design concept, where spacecraft subsystems are integrated into the load bearing structure of the satellite, is one considered technology. This paper describes the design, analysis and manufacture of a particular multifunctional power structure with a special focus on its dynamic response. An analytical and a finite element analysis of ten proposed multifunctional power structures, based on a sandwich panel configuration, are presented. The theoretical out-of-plane material properties for the investigated designs are derived with the help of the virtual displacement method. These theoretical properties are compared to finite element models and subsequently used in a parameter optimisation of the dynamic response of the ten introduced sandwich panels. The optimisation allows the identification of the most favourable multifunctional power structure. The experimental dynamic response of a manufactured multifunctional power panel is presented and compared to a conventional honeycomb panel for a successful evaluation of the introduced multifunctional approach. The results of this work show the ability of the presented multifunctional design to successfully combine the structural and power storage functions which makes the multifunctional power structure an excellent design approach for future space missions.