Abstract
The paper addresses the problem of actively attenuating a particular class of vibrations, known as microvibrations, which arise, for example, in panels used on satellites. A control scheme that incorporates feedback action is developed which operates at a set of dominant frequencies in a disturbance spectrum, where the control path model is estimated online. Relative to earlier published techniques, a new feature of the presented controller is the use of the inverse Hessian to improve adaptation speed. The control scheme also incorporates a frequency estimation technique to determine the relevant disturbance frequencies with higher precision than the standard fast Fourier transform (FFT). The control scheme is implemented on an experimental test-bed and the total achieved attenuation, as measured from the experiments, is 26 dB. The low computational demand of the control scheme allows for single chip controller implementation, a feature which is particularly attractive for potential applications areas, such as small satellites, where there are critical overall weight restrictions to be satisfied while delivering high quality overall performance. © IMechE 2005.