Abstract
This paper investigates the 28 GHz band sharing between fixed satellite services (FSS) and fifth generation (5G) new radio (NR) cellular system. In particular, it focuses on modelling a sharing scenario between the uplink of the FSS system and the uplink of the 5G NR enhanced mobile broadband (eMBB) cellular system. Such a scenario could generate interference from the FSS terminals towards the 5G base station, known as next generation Node-B (g-NodeB). We provide detailed interference modelling, sharing constraint derivations and performance analysis under realistic path loss models and antenna radiation patterns based on the latest system characteristics of the third generation partnership project (3GPP) 5G NR Release 15. Several scenarios for seamless coexistence of the two systems are considered by evaluating the efficiency and the signal-to-interference-plus-noise ratio (SINR) at the NR g-NodeB, and using the block error rate (BLER) as a sharing constraint. A single FSS terminal is considered and the impact of several parameters, such as the distance to the g-NodeB and FSS elevation angle, on the g-NodeB spectrum efficiency are evaluated. In addition, the impact of the g-NodeB antenna array size on reducing the FSS/g-NodeB protection distance is evaluated and a dynamic beam steering is proposed to minimise the protection distance.