Abstract
The reduced transition probabilities B(E2; 0+ g.s. → 2+ 1 ) of the 46Ar and 44Ca nuclei were studied using the Coulomb excitation technique at intermediate energy at the LISE/GANIL facility. The in-flight γ rays, emitted after the Coulomb excitation of their first 2+ states, were detected in an array of 64 BaF2 crystals. The present B(E2 ↑) value for 44Ca, 475(36) e2fm4 , agrees well with the value of 495(35) e2fm4 obtained by averaging results of previous experiments. Consistent B(E2; 0+ g.s. → 2+ 1 ) values of 225(29) e2fm4 and 234(19) e2fm4 have been obtained for 46Ar from an absolute and a relative measurement, normalized to the 44Ca value. Both results agree with the ones obtained with the same experimental technique at the NSCL facility but are a factor of 2 smaller than the shell model predictions. The drop in B(E2; 0+ g.s. → 2+ 1 ) in the Ar chain at N = 28, confirmed in this experiment, shows that 46Ar is sensitive to the N = 28 shell closure.