Abstract
Dynamic models are widely used in many branches of science and engineering, and it has been argued that many of the shortfalls with these models are due to the fact that the physics of joint dynamics are not fully understood. This makes the phenomenon very hard to model theoretically from first principles. Experimental analyses are therefore widely used to underpin any work in this area. This study aims to build on the previous experimental work based on simple beam joints and analyzes the damping trends for metal panels. This incorporates torsional effects into the system creating more complex displacements of the joint. Five panel configurations are investigated using an experimental approach that minimizes all external influences on the dynamics of the panels. Each mode loss factor is determined from these experimental tests and compared with the most established theoretical model in the field. The corresponding joint displacements and decay trends are also analyzed, producing indications as to the likely dominant source of damping, suggesting that the mode shapes can be categorized based on their displacement and dominant damping source.