Abstract
When designing an agent-based simulation, an important question to answer is how to model the decision making processes of the agents in the system. A large number of agent decision making models can be found in the literature, each inspired by different aims and research questions. In this paper we provide a review of 14 agent decision making architectures that have attracted interest. They range from production-rule systems to psychologically- and neurologically-inspired approaches. For each of the architectures we give an overview of its design, highlight research questions that have been answered with its help and outline the reasons for the choice of the decision making model provided by the originators. Our goal is to provide guidelines about what kind of agent decision making model, with which level of simplicity or complexity, to use for which kind of research question.