Abstract
Alzheimer's disease (AD) is the main cause of dementia in western countries. Although a definite diagnosis of this illness is only possible by necropsy, the analysis of nonlinear dynamics in electroencephalogram (EEG) signals could help physicians in this difficult task In this study we have applied Approximate Entropy (ApEn) to analyze the EEG background activity of patients with a clinical diagnosis of Alzheimer's disease and control subjects. ApEn is a newly introduced statistic that can be used to quantify the complexity (or irregularity) of a time series. We have divided the EEG data into frames to calculate their ApEn. Our results show that the degree of complexity of EEGs from control subjects is higher. Applying the ANOVA test, we have verified that there was a significant difference (p < 0.05) between the EEGs of these groups.