Abstract
Hydrogen-alimented fuel cells (FC) have a strong potential to play a decisive role in the new energy system for the coming years. The production of H2 pure enough to use it in fuel cells requires the development of very efficient catalysts for the WGS reaction. In our group several gold-ceria based catalysts have been developed presenting very promising results in this process [1,2]. The successful catalytic design makes mandatory an accurate knowledge about the reaction mechanism and the active species involved in the process. In order to address these issues a combination of several in-situ/operando characterization techniques is performed in this work using an optimized Au/CeO2-FeOx/Al2O3 catalyst. Synchrotron-based in-situ time-resolved Xray absorption spectroscopy (TR-XAS) and operando DRIFTS during the WGS reaction are employed with the ultimate goal to establish structure-activity relations and to propose the most likely reaction pathways.