Abstract
The interfacial region of a model, multilayer coating system on an aluminium substrate has been investigated by high resolution time-of-flight secondary ion mass spectrometry (ToF-SIMS). Employing ultra-low-angle microtomy (ULAM), the interface between a poly(vinylidene difluoride) (PVdF) based topcoat and a poly(urethane) (PU) based primer ‘buried’ over 20μm below the PVdF topcoat’s air/coating surface was exposed. Imaging ToF-SIMS and subsequent post-processing extraction of mass spectra of the ULAM exposed interface region and the PVdF topcoat and PU primer bulks indicates that the material composition of the polymer-polymer interface region is substantially different to that of the bulk PVdF and PU coatings. Analysis of the negative ion mass spectra obtained from the PVdF/PU interface reveals the presence of a methacrylate based component or additive at the interface region. Reviewing the topcoat and primer coating formulations reveals the PVdF topcoat formulation contains methyl methacrylate (MMA)/ethyl acrylate (EA) acrylic co-polymer components. Negative ion ToF-SIMS analysis of an acrylic co-polymer confirms it is these components that are observed at the PVdF/PU interface. Post-processing extraction of ToF-SIMS images based on the major ions of the MMA/EA co-polymers reveals these components are observed in high concentration at the extremities of the PVdF coating i.e. at the polymer-polymer interface but are also observed to be distributed evenly throughout the bulk of the PVdF topcoat. These findings confirms that a fraction of the MMA/EA acrylic co-polymers in the formulation segregate to the topcoat-primer interface where they enhance the adhesive properties exhibited by the PVdF topcoat towards the underlying PU primer substrate.