Abstract
Graphene nano platelets cross-linked with elemental sulphur have been used as supercapacitor electrode material to provide successful energy storage in a structural device. Chemical crosslinking of the composite produces a mechanically stable material, with both high conductivity and surface area. Characterisation was conducted using scanning electron microscopy and energy dispersive X-ray spectroscopy. Different concentrations of graphene-sulphur are investigated, along with addition of conductive carbon black and multiwall carbon nanotubes. The effects of these variables on the performance of the sulphur cross-linked graphene as a supercapacitor electrode are presented through impedance spectrometry, cyclic voltammetry and galvanostatic charge-discharge. Analysis of the structural performance of the material is conducted by flexural three-point-bend testing.