Abstract
A self-contained inflatable and rigidizable truss based substructure, its constraining mechanism, and stowage enclosure were developed for the RemoveDEBRIS technology demonstrator. RemoveDebris is a European Commission FP7 funded mission due for launch in late 2016. The hardware discussed in this paper will be integrated with the DebrisSat-1 microsatellite. During the course of the mission, active debris removal will be achieved by capturing DebrisSat-1 with the aid of a net fired from the primary platform. The inflatable module is key to this experiment as it allows the simulation of a much larger piece of debris than would be possible with a CubeSat alone. Following its capture, the inflatable structure will continue with its second objective as an end of life removal solution by passively drag augmenting DebrisSat-1's orbit to re-entry. The inflatable structure is constructed with six aluminum-polymer laminate cylindrical booms. These are connected in an axial manner to form a regular octahedron with a cross sectional area of 0.5 m2. A set of eight triangular polyester film segments or sails enclose the structure. The segments serve a dual purpose: firstly to increase the aerodynamic drag of the spacecraft, and secondly to distribute impact loads between the compressive inflatable members. A single cool gas generator (CGG) is utilised to deploy and rigidize the structure. This paper examines the development of the inflatable module from the early conceptual stages to the pre-qualification test level.