Abstract
© 2015 Taylor & Francis. This paper presents a Bayesian probabilistic framework for real-time alignment of a recording or score with a live performance using an event-based approach. Multitrack audio files are processed using existing onset detection and harmonic analysis algorithms to create a representation of a musical performance as a sequence of time-stamped events. We propose the use of distributions for the position and relative speed which are sequentially updated in real-time according to Bayes’ theorem. We develop the methodology for this approach by describing its application in the case of matching a single MIDI track and then extend this to the case of multitrack recordings. An evaluation is presented that contrasts ourmultitrack alignment method with state-of-the-art alignment techniques.