Abstract
Electrospun scaffolds of hydroxyapatite-gelatine nanocomposites were fabricated, crosslinked and subjected to image analysis, water swelling and mechanical testing. Fibre diameter and pore size of scaffolds increased with the applied voltage and the hydroxyapatite (HA) content. The scaffolds were stable in water for up to three weeks and there was a positive correlation between their mechanical properties and the applied voltage and the HA content. Maximum Young's modulus and tensile strength of 925 MPa and 9.75 MPa, respectively, were recorded for 25% HA scaffold.