Abstract
In this work, a one-dimensional numerical uid model is developed for co-axial dielec- tric barrier discharge (DBD) in pure helium and a parametric study is performed to systematically study the in uence of relative permittivity of the dielectric barrier and the applied voltage amplitude and frequency on the discharge performance. Discharge current, gap voltage and spatially averaged electron density pro les are presented as a function of relative permittivity and voltage parameters. For the geometry un- der consideration, both the applied voltage parameters are shown to increase the maximum amplitude of the discharge current peak up to a certain threshold value, above which it stabilized or decreased slowly. The spatially averaged electron density pro les follow a similar trend as the discharge current. Relative permittivity of the dielectric barrier is predicted to have a positive in uence on the discharge current. At lower frequency it is also shown to lead a transition from Townsend to glow dis- charge mode. Spatially and time averaged power density is also calculated and is shown to increase with increasing relative permittivity, applied voltage amplitude and frequency.