Abstract
This paper presents numerical simulations of the unsteady flow interactions between the main annulus and the disc cavity for an axial turbine. The simulations show the influence of the main annulus asymmetries (vane wakes, blade potential effect), and the appearance of rim seal flow instabilities. The generation of secondary frequencies due to non-linear interactions is observed, and the possibility of further low frequency effects and resonance is noted. The computations are compared to experimental results, looking at tracer gas concentration and mass-flows. Results are further analysed to investigate the influence of the rim seal flow on the blading aerodynamics. The flow that is ejected through the rim seal influences the unsteady flow impinging the blades. The influence of this rim-seal flow is even observed downstream of the blades, where it distorts the radial profile of stagnation temperature. Copyright © 2006 by ASME.