Abstract
Cytomegalovirus (CMV) remains a cause of disease in individuals with weakened immune systems such as patients undergoing organ transplantation. The mainstay of treatment for CMV is ganciclovir: a CMV-specific drug that looks like a building block of the viral DNA and which requires activation by a protein contained within CMV. Understanding how patients respond to treatment can lead to a better understanding of the basic biology of CMV in the human and also help to optimize treatment regimens. In this study we observed that following treatment of CMV disease in organ transplant patients, CMV viral loads decay according to four distinct patterns. We have developed a novel mathematical model that is able to describe each of these decay patterns. The model could potentially be used to assess how different patients respond to treatment in clinical settings and also to design better drug regimens as per patient. These results have striking implications in terms of how long patients should remain on treatment and provide new insight into CMV infection in the human host.