Abstract
Amino acids adsorbed over single crystal metal surfaces have emerged as prototypical systems for exploring the properties that govern the development of long-range chirality in self-assembled monolayers (SAM) and supramolecular 2D networks. In this study, we characterise the self-assembly mechanism for glycine on the Cu(110) surface. This process occurs on a time scale that is too fast for most atomically resolved microscopic techniques, so the mechanism we propose here provides new insight for an important unexplored surface phenomenon.