Abstract
Target tracking is a challenging task and generally no analytical solution is available, especially for the multi-target tracking systems. To address this problem, probability hypothesis density (PHD) filter is used by propagating the PHD instead of the full multi-target posterior. Recently, the particle flow filter based on the log homotopy provides a new way for state estimation. In this paper, we propose a novel sequential Monte Carlo (SMC) implementation for the PHD filter assisted by the particle flow (PF), which is called PF-SMCPHD filter. Experimental results show that our proposed filter has higher accuracy than the SMC-PHD filter and is computationally cheaper than the Gaussian mixture PHD (GM-PHD) filter.