Abstract
The need for a generic and adaptable object detection and recognition method in images, is becoming a necessity today, given the rapid development of the internet and multimedia databases in general. This paper compares the state-of-the-art in object recognition and proposes a method based on adaptable models for detecting thematic categories of objects. Furthermore, automatically constructed semantics are used for filtering false positive objects. The classification of objects into categories is performed by the popular Adaboost. The method has been used for identifying car objects and so far has indicated not only accurate recognition performance, but also good adaptability to new objects types.