Abstract
Reaction of [Ru(IPr)2(CO)H]BArF4 with ZnEt2 forms the heterobimetallic species [Ru(IPr)2(CO)ZnEt]BArF4 (2), which features an unsupported Ru-Zn bond. 2 reacts with H2 to give [Ru(IPr)2(CO)(η2-H2)(H)2ZnEt]BArF4 (3) and [Ru(IPr)2(CO)(H)2ZnEt]BArF4 (4). DFT calculations indicate that H2 activation at 2 proceeds via oxidative cleavage at Ru with concomitant hydride transfer to Zn. 2 can also activate hydridic E-H bonds (E = B, Si), and computed mechanisms for the facile H/H exchange processes observed in 3 and 4 are presented. © 2016 American Chemical Society.