Abstract
A CFD code for the prediction of flow and heat transfer in rotating turbine disc cavities is described and its capabilities demonstrated through comparison with available experimental data. Application of the method to configurations typically found in aeroengine gas turbine is illustrated and discussed. The code employs boundary-fitted coordinates and uses the κ-ε turbulence model with alternative near-wall treatments. The wall function approach and a one-equation near-wall model are compared and it is shown that there are particular limitations in the use of wall functions at low rotational Reynolds number.