Abstract
This paper has described the application of nickel-doped catalytic constituents based on gadolinium-doped ceria (GDC) for fabrication of the solid-oxide fuel cell (SOFC) anode layer integrated with an in-situ methane-reforming layer (MRL). Nanocrystalline powders of Ni1-xCo3xO1+3x/GDC and Ni1-xCuxO/GDC with various compositions (x = 0.3, 0.5, 0.7) were synthesised using an ultrasound-assisted method followed by a thermal treatment to be applied for fabrication of the integrated MRL and the SOFC anode layer, respectively. Thermogravimetric analysis showed that the synthesized powders should be optimally calcined at 700 °C to exhibit improved crystallinity and catalytic activity. The morphological analysis showed the formation of nanocrystalline powders with particle size ranging from 4-86 nm that was confirmed by the crystal size analysis using XRD results. The elemental analysis by EDX indicated a successful distribution of the constituent ceramic and bimetallic phases after the addition of a sonication stage. The results of FT-IR and Raman spectroscopy confirmed lack of solvents residual after calcination that was in agreement with residual moisture content values obtained from TGA data. The fabricated anode-MRL bilayers had an adequate porosity (36.7%) and shrinkage (33.5%) after adding carbon particles as a pore former (at a loading fraction of 5.9 wt.%). The catalytic performance measurements of the MRL showed a methane conversion of 13% at maximum activity with a weight hour space velocity (WHSV) of 60 L/gh that was mainly due to carbon deposition in the reaction condition.