Abstract
Objectives
This study tested the hypothesis that shows advanced image analysis can differentiate fit and unfit patients for radical radiotherapy from standard radiotherapy planning imaging, when compared to formal lung function tests (FEV1, Forced Expiratory Volume in 1 second) and TLCO (Transfer Factor of Carbon Monoxide).
Methods
An apical region of interest (ROI) of lung parenchyma was extracted from a standard radiotherapy planning CT scan. Software using a grey level co-occurrence matrix (GLCM) assigned an entropy score to each voxel, based on its similarity to the voxels around it. Density and entropy scores were compared between a cohort of fit patients (defined as FEV1 and TLCO above 50% predicted value) and unfit patients (FEV1 or TLCO below 50% predicted).
Results
29 fit and 32 unfit patients were included. Mean and median density and mean and median entropy were significantly different between fit and unfit patients (p= 0.0021, 0.0019, 0.0357 and 0.0363 respectively, 2 sided t-test).
Conclusions
Density and entropy assessment can differentiate between fit and unfit patients for radical radiotherapy, using standard CT imaging.
Advances in knowledge
This study shows that a novel intervention can generate further data from standard CT imaging. This data could be combined with existing studies to form a multi-organ patient fitness assessment from a single CT scan.