Abstract
Background: Inference of gene regulatory network structures from RNA-Seq data is challenging due to the natureof the data, as measurements take the form of counts of reads mapped to a given gene. Here we present a model forRNA-Seq time series data that applies a negative binomial distribution for the observations, and uses sparse regressionwith a horseshoe prior to learn a dynamic Bayesian network of interactions between genes. We use a variationalinference scheme to learn approximate posterior distributions for the model parameters. Results: The methodology is benchmarked on synthetic data designed to replicate the distribution of real worldRNA-Seq data. We compare our method to other sparse regression approaches and find improved performance inlearning directed networks. We demonstrate an application of our method to a publicly available human neuronalstem cell differentiation RNA-Seq time series data set to infer the underlying network structure. Conclusions: Our method is able to improve performance on synthetic data by explicitly modelling the statisticaldistribution of the data when learning networks from RNA-Seq time series. Applying approximate inferencetechniques we can learn network structures quickly with only moderate computing resources.