Abstract
In this paper attention is focused on a simply supported panel, with twin patches of piezoelectric material bonded on opposite faces of the panel acting as actuators. A test rig comprising of an aluminium alloy panel has been designed and built. Particular attention has been placed in designing the rig to reproduce as accurately as possible a simple support along all four edges. The deign and analysis of the rig were carried out using the Finite Element (FE) method, and the results of the FE analysis are then compared and validated against the experimental results. A Mechanical Impedance based method, and the Lagrange Rayleigh-Ritz Method were then used to produce mathematical models of the actively controlled panel. These two techniques are chosen as representative of commonly used techniques in the production of mathematical models for active control design studies. The results obtained from the numerical simulations were compared with experimental results in order to assess the accuracy and sensitivity of the modelling techniques.