Abstract
Doping of Ge with Sn atoms by ion implantation and annealing by solid phase epitaxial re-growth process was investigated as a possible way to create GeSn layers. Ion implantation was carried out at liquid nitrogen to avoid nano-void formation and three implant doses were tested: 5×10, 1×10 and 5×10 at/cm, respectively. Implant energy was set to 45 keV and implants were carried out through an 11 nm SiNO film to prevent Sn out-diffusion upon annealing. This was only partially effective. Samples were then annealed in inert atmosphere either at 350°C varying anneal time or for 100 s varying temperature from 300 to 500°C. SPER was effective to anneal damage without Sn diffusion at 350° for samples implanted at medium and low fluences whereas the 5×10 at/cm samples remained with a ∼15 nm amorphous layer even when applying the highest thermal budget. © 2012 American Institute of Physics.