Abstract
Stars slingshotted by the supermassive black hole at the Galactic centre escape from the Milky Way so quickly that their trajectories are almost straight lines. Previous works have shown how these `hypervelocity stars' (stars moving faster than the local Galactic escape speed) are subsequently de ected by the gravitational field of the Milky Way and the Large Magellanic Cloud (LMC), but have neglected to account for the reflex motion of the Milky Way in response to the y-by of the LMC. A consequence of this motion is that the hypervelocity stars we see in the outskirts of the Milky Way today were ejected from where the Milky Way centre was hundreds of millions of years ago. This change in perspective causes large apparent de ections of several degrees in the trajectories of the hypervelocity stars. We quantify these deflections by simulating the ejection of hypervelocity stars from an isolated Milky Way (with a spherical or flattened dark matter halo), from a fixed-in-place Milky Way with a passing LMC, and from a Milky Way which responds to the passage of the LMC, finding that LMC passage causes larger de ections than can be caused by a attened Galactic dark matter halo in CDM. The 10 as yr