Abstract
Underlay cognitive beamforming allows secondary transmitters to suppress interferences to the primary users, whilst maintain their own quality of services. This paper aims at investigating joint power and interference trade-off inherent in the underlay cognitive beamforming scheme. It is shown that the work of interests leads to a non-convex optimization problem, which can be resolved by employing the second-order cone programming. It is theoretically proved that introducing zero-interference to the primary user does not always lead to the system optimality; moreover, we exhibit two conditions, for which the interference should be treated as noise in order to maximize the sum-rate of the considered beamforming system. © VDE VERLAG GMBH.