Abstract
In this paper we explore the distribution of training of self-organised maps (SOM) on grid middleware. We propose a two-level architecture and discuss an experimental methodology comprising ensembles of SOMs distributed over a grid with periodic averaging of weights. The purpose of the experiments is to begin to systematically assess the potential for reducing the overall time taken for training by a distributed training regime against the impact on precision. Several issues are considered: (i) the optimum number of ensembles; (ii) the impact of different types of training data; and (iii) the appropriate period of averaging. The proposed architecture has been evaluated in a grid environment, with clock-time performance recorded.