Abstract
We demonstrate the existence of large phononic band gaps in designed hyperuniform (isotropic) disordered two-dimensional (2D) phononic structures of Pb cylinders in epoxy matrix. The phononic band gaps in hyperuniform disordered phononic structures are comparable to band gaps of similar periodic structures, for both out-of-plane and in-plane polarizations. A large number of localized modes is identi ed near the band edges, as well as, di usive transmission throughout the rest of the frequency spectrum. Very high-Q cavity modes for both out-of-plane and in-plane polarizations are formed by selectively removing a single cylinder out of the structure. E cient waveguiding with almost 100% transmission trough waveguide structures with arbitrary bends is also presented. We expand our results to thin three-dimensional layers of such structures and demonstrate e ective band gaps related to the respective 2D band gaps. Moreover, the drop in the Q factor for the three-dimensional structures is not more than three orders of magnitude compared to the 2D ones.