Abstract
In Wolf-Rayet and asymptotic giant branch (AGB) stars, the Al26g(p,γ)Si27 reaction is expected to govern the destruction of the cosmic γ-ray emitting nucleus Al26. The rate of this reaction, however, is highly uncertain due to the unknown properties of key resonances in the temperature regime of hydrogen burning. We present a high-resolution inverse kinematic study of the Al26g(d,p)Al27 reaction as a method for constraining the strengths of key astrophysical resonances in the Al26g(p,γ)Si27 reaction. In particular, the results indicate that the resonance at Er=127 keV in Si27 determines the entire Al26g(p,γ)Si27 reaction rate over almost the complete temperature range of Wolf-Rayet stars and AGB stars.