Abstract
The co-adsorption of hydrogen with a simple chiral modifier, alanine, on Ni{111} was studied using Density Functional Theory in combination with ambient-pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy at temperatures of 300~K and above, which are representative of chiral hydrogenation reactions. Depending on the hydrogen pressure, the surface enables protons to "pop on and off" the modifier molecules, thus significantly altering the adsorption geometry and chemical nature of alanine from anionic tridentate in ultra-high vacuum to predominantly zwitterionic bidentate at hydrogen pressures above 0.1 Torr. This hydrogen-stabilised modifier geometry allows alternative mechanisms for proton transfer and the creation of enatioselective reaction environments.