Abstract
Asymmetrical periodic ('ratchet') potential energy structures have a number of applications, including the dielectrophoretic rectification of Brownian motion, the implementation of quantum tunnelling devices, and as a model of the action of molecular motors such as muscles. The effectiveness of such devices is dependent on the asymmetry of the potential energy, not that of the potential energy generating structures. Using empirical analysis of simulations of electric field ratchets, this paper derives empirical expressions describing, and optimizing, electric field ratchets in terms of the electrode dimensions.