Abstract
In wireless acoustic sensor networks (WASNs), the conventional steered response power (SRP) approach to source localization requires each node to transmit its microphone signal to a fusion center. As an alternative, this paper proposes two different fusion strategies for local, single-node SRP maps computed using only the microphone pairs within a node. In the first fusion strategy, we sum all single-node SRP maps in a fusion center, requiring less communication than the conventional SRP approach because the single-node SRP maps typically have less parameters than the raw microphone signals. In the second fusion strategy, the single-node SRP maps are distributively averaged without using a fusion center, requiring communication amongst connected nodes only. Simulations show that we achieve a good trade-off between communicational load and localization performance.