Abstract
A discrete Markov model is proposed to study the interscale dynamics of high Reynolds number wall turbulence. The amplitude modulation of the small turbulent scales due to the interaction with large turbulent scales is investigated for three experimental turbulent boundary layers. Through an appropriate discretisation of the turbulence signals, recently proved universal thermodynamic bounds for discrete-state stochastic systems are shown to apply to continuous-state systems like turbulence, regardless of the distance from the wall and the Reynolds number. Adopting Schnakenberg’s network theory for stochastic processes, we provide evidence for a direct proportionality relation between the mean cycle affinity-based entropy production rate (a stochastic thermodynamic quantity) and a mean entropy production rate associated with the net large-to-small-scale turbulent kinetic energy production. Finally, new insights into the relative arrangement (lag/lead) between large and small scales are provided.