Abstract
Background: In this work, we examine determinants of staff departure rates in the NHS, a critical issue for workforce stability and continuity of care. High turnover, particularly among clinical staff, undermines service delivery and incurs substantial replacement costs. Methods: Here, we analyse a unique dataset derived from Electronic Staff Records at Ashford and St. Peter’s NHS Foundation Trust, using a machine learning approach to move beyond traditional survey-based methods, to assess propensity to leave. Results: In addition to established predictors such as salary and length of service, we identify drivers of increased risks of staff exits, including the distance between home and workplace and, especially for medical staff, cost centre vacancy rates. Conclusions: These findings highlight the multifactorial nature of staff retention and suggest the potential of local administrative data to improve workforce planning, for example, through hyperlocal recruitment strategies. Whilst further work will be required to assess the generalisability of our findings beyond a single Trust, our analysis offers insights for NHS managers seeking to stabilise staffing levels and reduce attrition through targeted interventions beyond pay and tenure.