Abstract
The Open Radio Access Network (Open RAN) architecture introduces flexibility, interoperability, and high performance through its open interfaces, disaggregated and virtualized components, and intelligent controllers. However, the open interfaces and disaggregation of base stations leave only the Open Radio Unit (O-RU) physically deployed in the field, making it more vulnerable to malicious attacks. This paper addresses signaling storm attacks and introduces a new sub-use case within the signaling storm use case of the 0 RAN Alliance standards by exploring novel attack triggers. Specifically, we examine the compromise of O-RUs and their power sockets, which can lead to a surge in handovers and reregistration procedures. Additionally, we leverage Open RAN's intelligence capabilities to detect these signaling storm attacks. Seven machine learning algorithms have been evaluated based on their detection rate, accuracy, and inference time. Results indicate that the BiDirectional Long Short-Term Memory (BiDLSTM) model outperforms others, achieving a detection rate of {8 8. 2 4 \%} and accuracy of {9 6. 1 5 \%}.