Abstract
Cognitive radio is an enabling technology that allows opportunistic users to reuse licensed spectrum in order to overcome the artificial spectrum scarcity. In cognitive radio networks, opportunistic users collaboratively perform spectrum sensing to detect the presence of incumbent users. Collaborative Spectrum Sensing (CSS) performance suffers due to the presence of malicious users. We propose a robust malicious user detection algorithm which exploits inherent statistical moments of the sensing observations from collaborating users to identify malicious users among them. In this way, CSS performance is improved by detecting and marginalizing the effects of malicious users.