Abstract
Friction coefficients for the fusion reaction 16O+16O → 32S are extracted based on both the time-dependent Hartree-Fock and the time-dependent density matrix methods. The latter goes beyond the mean-field approximation by taking into account the effect of two-body correlations, but in practical simulations of fusion reactions we find that the total energy is not conserved. We analyze this problem and propose a solution that allows for a clear quantification of dissipative effects in the dynamics. Compared to mean-field simulations, friction coefficients in the density-matrix approach are enhanced by about 20 %. An energy-dependence of the dissipative mechanism is also demonstrated, indicating that two-body collisions are more efficient at generating friction at low incident energies.