Abstract
Vector-borne diseases represent complex infection transmission systems; previous epidemiological models have been unable to formally capture the relationship between the ecological limits of vector species and the dynamics of pathogen transmission. By making this advance for the key disease, Rift Valley fever, we are able to show how seasonally varying availability of water bodies and ambient temperatures dictate when the mosquito vector populations will persist and importantly, those sets of conditions resulting in stable oscillations of disease transmission. Importantly, under the latter scenario, short-term health control measures will likely fail, as the system quickly returns to the original configuration after the intervention stops. Our model, therefore, offers an important tool to better understand vector-borne diseases and design effective eradication programs.