Abstract
Existing techniques for dynamic scene re- construction from multiple wide-baseline cameras pri- marily focus on reconstruction in controlled environ- ments, with fixed calibrated cameras and strong prior constraints. This paper introduces a general approach to obtain a 4D representation of complex dynamic scenes from multi-view wide-baseline static or moving cam- eras without prior knowledge of the scene structure, ap- pearance, or illumination. Contributions of the work are: An automatic method for initial coarse reconstruc- tion to initialize joint estimation; Sparse-to-dense tem- poral correspondence integrated with joint multi-view segmentation and reconstruction to introduce tempo- ral coherence; and a general robust approach for joint segmentation refinement and dense reconstruction of dynamic scenes by introducing shape constraint. Com- parison with state-of-the-art approaches on a variety of complex indoor and outdoor scenes, demonstrates im- proved accuracy in both multi-view segmentation and dense reconstruction. This paper demonstrates unsuper- vised reconstruction of complete temporally coherent 4D scene models with improved non-rigid object seg- mentation and shape reconstruction and its application to various applications such as free-view rendering and virtual reality.