Abstract
Superlattices are periodic structures where the constituents alternate between low- and high-bandgap materials; the resulting quantum confinement tailors the resulting device properties and increases their operating speed. Amorphous carbon is an excellent candidate for both the well and barrier layers of the superlattices, leading to a fast and reliable device manufacturing process. We show theoretically and experimentally that, using low energy-loss spatially resolved spectroscopy, we can characterize the component layers of a superlattice. We measure quantum confinement of the electron wave function in the superlattice's wells and calculate the effective tunneling mass for amorphous carbon superlattices as m* =0.067 me. This effective mass makes diamondlike carbon films as feasible candidate for electronic devices. © 2006 American Institute of Physics.