Abstract
Dispersion of particles, as evidenced by changes in their number distributions (PNDs) and concentrations (PNCs), in urban street canyons, is still not well understood. This study compares measurements by a fast-response particle spectrometer (DMS500) of the PNDs and the PNCs (5–1000 nm, sampled at 1 Hz) at street and rooftop levels in a Cambridge UK street canyon, and examines mixing, physical and chemical conversion processes, and the competing influences of traffic volume and rooftop wind speed on the PNDs and the PNCs in various size ranges. PNCs at street level were ≈6.5 times higher than at rooftop. Street-level PNCs followed the traffic volume and decreased with increasing wind speed, showing a larger influence of wind speed on 30–300 nm particles than on 5–30 nm particles. Conversely, rooftop PNCs in the 5–30 nm size range increased with wind speed, whereas those for particles between 30 and 300 nm did not vary with wind speed.