Abstract
Reduced graphene oxide sheets were prepared by hydrothermal method. IR and XRD data revealed that both reduction and exfoliation occur during hydrothermal process of graphite oxide (GtO) aqueous dispersions. The concentration of GtO dispersion, process duration and alkali conditions e.g. presence of K2CO3 influence quality characteristics of the produced materials as it was emerged by Raman spectroscopy. Hydrothermal process allows in parallel with reduction and exfoliation the intercalation with nanoparticles (NPs). By using FeCl3.6H2O in presence of NaAc as a precursor, a composite of reduced graphene oxide (rGO) intercalated with iron oxide NPs (Fe2O3/rGO) was synthesized. Electrochemical measurements indicated that the sample treated with K2CO3 had the best performance in terms of capacitance. Both rGO and Fe2O3/rGO are materials of particular interest for supercapacitor applications.