Abstract
A series of adducts were prepared based on the reaction of 1-ethyl-3-methylimidazolium acetate and benzal- dehyde in various stoichiometries (from equimolar reaction to benzaldehyde in 10-fold excess) and the resulting adducts were characterized using nuclear magnetic resonance spectroscopy (¹H, ¹³C, DEPT, and HQSC experi- ments). Differential scanning calorimetry was used to examine the initiating behaviour of the adducts towards mono- and di-functional epoxy resins and the data were used to determine kinetic parameters for the poly- merization. The lower temperature peak, due to carbene formation, is sensitive to adduct concentration; the residual ionic liquid in the adduct mixture contributes towards the initiation of the curing reaction. When a monofunctional epoxy and the 1:1 adduct was subjected to a 2-week period of storage at room temperature and sub-zero temperatures in the freezer, the profiles of the thermograms for the frozen samples do not change considerably over the storage period and the formulation retains a light yellow colour (rather than the viscous, dark red appearance of the formulation stored at room temperature).